Biomarkers for tissue engineering of the tendon-bone interface
نویسندگان
چکیده
The tendon-bone interface (enthesis) is a highly sophisticated biomaterial junction that allows stress transfer between mechanically dissimilar materials. The enthesis encounters very high mechanical demands and the regenerative capacity is very low resulting in high rupture recurrence rates after surgery. Tissue engineering offers the potential to recover the functional integrity of entheses. However, recent enthesis tissue engineering approaches have been limited by the lack of knowledge about the cells present at this interface. Here we investigated the cellular differentiation of enthesis cells and compared the cellular pattern of enthesis cells to tendon and cartilage cells in a next generation sequencing transcriptome study. We integrated the transcriptome data with proteome data of a previous study to identify biomarkers of enthesis cell differentiation. Transcriptomics detected 34468 transcripts in total in enthesis, tendon, and cartilage. Transcriptome comparisons revealed 3980 differentially regulated candidates for enthesis and tendon, 395 for enthesis and cartilage, and 946 for cartilage and tendon. An asymmetric distribution of enriched genes was observed in enthesis and cartilage transcriptome comparison suggesting that enthesis cells are more chondrocyte-like than tenocyte-like. Integrative analysis of transcriptome and proteome data identified ten enthesis biomarkers and six tendon biomarkers. The observed gene expression characteristics and differentiation markers shed light into the nature of the cells present at the enthesis. The presented markers will foster enthesis tissue engineering approaches by setting a bench-mark for differentiation of seeded cells towards a physiologically relevant phenotype.
منابع مشابه
Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces.
UNLABELLED Orthopedic interface tissue engineering aims to mimic the structure and function of soft-to-hard tissue junctions, particularly bone-ligament, bone-tendon, and bone-cartilage interfaces. A range of engineering approaches has been proposed to mimic the gradient architecture, physical properties and chemical characteristics of interface tissues using conventional polymeric biomaterials...
متن کاملFunctional attachment of soft tissues to bone: development, healing, and tissue engineering.
Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, inter...
متن کاملMechanisms of Bimaterial Attachment at the Interface of Tendon to Bone.
The material mismatch at the attachment of tendon to bone is amongst the most severe for any tensile connection in nature. Attaching dissimilar materials is a major challenge in engineering, and has proven to be a challenge in surgical practice as well. Here, we examine the material attachment schemes employed at this connection through the lens of solid mechanics. We identify four strategies t...
متن کاملBiomimetic scaffold design for functional and integrative tendon repair.
Rotator cuff tears represent the most common shoulder injuries in the United States. The debilitating effect of this degenerative condition coupled with the high incidence of failure associated with existing graft choices underscores the clinical need for alternative grafting solutions. The 2 critical design criteria for the ideal tendon graft would require the graft to not only exhibit physiol...
متن کاملGradient biomaterials for soft-to-hard interface tissue engineering.
Interface tissue engineering (ITE) is a rapidly developing field that aims to fabricate biological tissue alternates with the goal of repairing or regenerating the functions of diseased or damaged zones at the interface of different tissue types (also called "interface tissues"). Notable examples of the interface tissues in the human body include ligament-to-bone, tendon-to-bone and cartilage-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018